
 Webjig: An Automated User Data Collection System

for Website Usability Evaluation

Mikio Kiura1, Masao Ohira
1
 and Ken-ichi Matsumoto1,

1 Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, Japan

{mikio-k, masao, matumoto}@is.naist.jp

Abstract. In order to improve website usability, it is important for developers

to understand how users access websites. In this paper, we present Webjig,

which is a support system for website usability evaluation in order to resolve

the problems associated with the existing systems. Webjig can collect users’

interaction data from static and dynamic websites. Moreover, by using Webjig,

developers can precisely identify users’ activities on websites. By performing

an experiment to evaluate the usefulness of Webjig, we have confirmed that

developers could effectively improve website usability.

Keywords: web usability, usability evaluation, analysis of user interactions,

dynamic websites.

1 Introduction

It has been found that there are various benefits associated with improving website

usability, and so, in recent times, there have been increasing interests on website

usability. For instance, in the case of an EC (electronic commerce) site, website

usability has an impact on conversion rates. In the case of a website used in

workplaces, website usability can also affect the work efficiency. In addition, the cost

of user support can be reduced by improving website usability. It also influences a

company’s image.

Developers must understand how users access a website in order to improve

website usability [1]. Usability testing is widely used for understanding users’

interactions on a website [2]. In usability testing, users perform some specific tasks

within a set time under the supervision of usability engineers (or experts). The

engineers observe how the users follow certain steps to accomplish the tasks. Through

usability testing, developers can presume users’ intellectual process and observe their

interaction; these developers can identify problems, clarify design issues, or come up

with new ideas.

Although usability testing is a prevalent approach for improving website usability,

it cannot be applied to every website. Usability testing requires stakeholders (e.g.,

users, developers, and experts) to spend large amounts of time and money.

Developers cannot conduct usability testing easily [3]. So far, several systems [4, 5, 6,

and 7] for website usability evaluation have been proposed so that developers can

understand how users access a website over a network with low cost.

However, these systems are designed to collect data only from static websites.

Developers cannot figure out users’ interactions on a dynamic website (e.g.,

automatically created webpages by CGI or server-side script, and webpages

developed by JavaScript in a Web browser). By using JavaScript, developers can

implement an interface that can switch the displayed contents by tabs, drop down

menus, or drag-and-drop methods without URL transitions. On a website using such

interfaces, the existing systems cannot obtain the previously displayed contents

accessed by users because these contents would change.

In this paper, we propose Webjig, which is a support system for website usability

evaluation for both dynamic and static websites; this system records users’

interactions related to the contents that are displayed in users’ Web browser.

Developers can exactly understand users’ interactions on a website by using Webjig.

Thus, they can efficiently improve website usability.

2 Related Work

The traditional approach to resolving problems of website usability it to use the

Web server accesses logs [4]. Developers can know various kinds of information

including users’ IP address, accessed time, request data, and Web server’s response

from the Web server access log. The advantage of using the Web access sever log is

that the access log is automatically saved in a Web server and can be used by

developers with low cost. If developers can easily use the Web access log to improve

website usability, however, they cannot know users’ interactions such as mouse

motions, mouse-click positions, and mouse-click timings on a website [5].

Several systems have been proposed to automatically collect the data of users’

interaction on a website (e.g., MouseTrack [6], UsaProxy [7]). The systems solved the

problem above, by identifying users’ mouse motions, mouse-click positions, and

mouse-click timings by embedding JavaScript codes into a webpage. The systems

helped developers understand users’ interactions on a website at a considerably low

cost.

Previous studies have suggested that there is a correlation between the point of

gaze and the position of mouse cursor. Chen et al. have reported that there is a strong

correlation between the point of gaze and the position of mouse cursor; further, the

developer can predict a point in the website where the user interested in and they may

chart a pattern of the user by users’ interaction [8]. In addition, Muller et al. reported

that 35% of users traced a sentence with a mouse cursor when they read the sentence

in a website. These results show that developers can detect the problems of website

usability by studying users’ interaction on it.

3 Webjig

In this paper, we introduce Webjig, which is a new system used to solve the

problems of the existing systems. Webjig can handle data from static and dynamic

websites. By analyzing DOM (Document Object Model) of HTML, Webjig can

collect the data of contents clicked by users, including timings, positions, and motions.

This mechanism allows usability engineers and developers to solve the problems

associated with the existing system, i.e., the existing system could not precisely

identify users’ interactions on a dynamic website.

We present the system architecture of Webjig in Fig.1. Webjig is a client/server

system. The client is implemented by using JavaScript, which executes in a Web

browser. The server is implemented by using PHP. The system consists of

Webjig::Fetch, Webjig::Analysis, and Webjig::DB.

Webjig::Fetch is a subsystem that automatically collects the data of users’

interactions on a website. Webjig::Analysis is a subsystem that shows the information

of users’ interactions to developers. Webjig::DB is a subsystem that holds the data of

users’ interactions and provides API to access the data.

Fig. 1. System architecture of Webjig

3.1 Webjig::Fetch

Webjig::Fetch is a subsystem that automatically collects the data of users’

interactions on the website. Table 1 shows the data collected and stored by Webjig.

During the time in which a user stays on a webpage, the data may be changed, except

for the name and version of the Web browser. The system monitors a change in the

data at intervals of dozens of milliseconds and sends the data to Webjig::DB at

intervals of few seconds and at the time when the user exits the webpage.

Table 1. Collected data usign Webjig.

Data type
Timing of data

 collection

Timing of data

transmission

Name and version of Web browser Loaded Loaded

Inner size of Web browser Changed Intervals and exit

Position of scroll bar Changed Intervals and exit

Position of mouse cursor Changed Intervals and exit

Timing and type of mouse click Pressed Intervals and exit

Timing and type of key pressed Pressed Intervals and exit

Contents displayed in a Web browser Changed Intervals and exit

For collecting users’ interactions data, developers have to install Webjig::Fetch in a

webpage. what developers have to do is only to insert a line <script src=”URL of

Webjig::Fetch”></script> in the HTML source code of the webpage that targets

the usability evaluation using Webjig. Fig.2 is an example of Webjig installed in an

HTML source code. Webjig works even if the developer may insert the script tag at

the any place in the HTML source code. However, a mainstream Web browser

interprets the HTML source code from the top and displays the contents. Therefore,

we recommend inserting the script tag at the bottom of the HTML source code so that

Webjig does not disturb the original contents.

 <html>

 <head>
 <title>Sample Page<title>

 </head>
 <body>

 <p>Sample Content</p>

 <script src=”http://example.com/webjig.js” ></script>
 </body>

 </html>
Fig. 2. An example of HTML source code

3.2 Webjig::Analysis

Webjig::Analysis has various features for supporting website usability evaluation.

For instance, Webjig::Analysis can replay users’ interactions such as mouse motions,

mouse click, and keyboard input related to the displayed contents in a movie format

by using the collected data.

In Fig.3, we show a screenshot of Webjig::Analysis when it replays the users’

interactions. The system consists of displayed contents in a Web browser and some

floating windows that control the system and show various kinds of information.

Developers can replay users’ interactions such as play, stop, forward, and rewind

anytime by using various control buttons, seek bar, or slider available on the control

window. In addition, the system can also generate a heat map, which shows where the

users often click, and presume the portions where the users read and do not read on a

webpage. By using these features, developers can examine the following questions.

 Are there any confusing graphics in links?
 Do users pay attention to the content that developers want them to read?

 Where do users look or not look?
 How do users access the website?
 What do user wrong operation on the way to the goal?
 How do users use a dynamic interface?
 Where do users pause when they input into forms?
 Where did the user view before exiting the website?

 and so forth.

Fig. 3. Screenshot of Webjig::Analysis.

4 System Evaluation

4.1 Overview

We performed an experiment to evaluate the usefulness of Webjig. 54 graduate

students (39 males and 15 females, average age 20) participated in the experiment as

subjects. 54 subjects were divided into three groups. Each group worked on different

tasks described in the next subsection.

4.2 Experiment procedure and task

We executed the experiment according to the following procedures.

Step 1. We provided 24 uses (subject of Group A) five tasks. Each task required the

subjects to find a specified product from a dynamic menu implemented using

JavaScript. Webjig recorded users’ interactions during task execution.

Step 2. Based on the collected data in Step 1, three subjects who had a role of

developers (Group B) analyzed the users’ interactions during task execution

using Webjig::Analysis. The developers planned for an improved structure of

menu.

Step 3. We provided 27 different users (subjects of Group C) tasks similar to Step 1.

The difference between Step 1 and Step 2 is that the subject of Group C used

the improved menu. Webjig recorded users’ interactions during task

execution.

Step 4. Finally, comparing the task execution time of Step1 and Step3, we checked

the validity of the change in the structure of the menu.

Fig.4 is the dummy website for the experiment. Table 1 shows target products and

categories where the products exist.

Fig. 4. Screenshot of the dummy website for the experiment.

Table 2. Target products and category for each task.

Task Name Product Category

Task 1 Dry cell Audio & visual

Task 2 SD memory card Cameras

Task 3 A massage chair Health

Task 4 Electronic dictionary Office

Task 5 Fax House & appliance

4.3 Experiment results

Developers can know where users look in the webpage by using Webjig. Table 3

shows what percentage of the subject of Group A firstly clicked on which categories.

The grayed rectangle in Table 3 means the correct category where a specified product

exists for each task. For example, 54% of the subjects first clicked on the category of

house & appliance, thought dry cell belonged to the category of audio & visual. When

using existing systems, developers cannot know such the information.

Table 3. Results of first category sellection.

Category Task 1 Task 2 Task 3 Task 4 task5

Camera 29% 13% 0% 0% 0%

Computer 0% 46% 0% 13% 4%

Audio-video equipment 4% 33% 0% 0% 21%

House & appliance 54% 4% 71% 29% 29%

Game 4% 4% 0% 0% 0%

Office equipment 8% 0% 4% 58% 46%

Health 0% 0% 25% 0% 0%

Table 4 shows the changed structure of the menu which was planned by the

developers based on the result of Table 3. The plan is made from an idea that if there

was the category more clicked by users than the current category, a target product

should be moved to a proper category.

In case of task 1 where subjects searched a dry cell, a dry cell belonged to the

audio & visual category, but many subjects first pay attention to the house &

appliance category. Therefore, the developers moved the dry cell to the category of

house & appliance. Further, in case of task 4 where subjects searched an electronic

dictionary, an electronic dictionary belonged to the category of office equipment, and

the majority of the subjects first paid attention to the office equipment category.

Therefore, the developers did not move it to any other category.

Table 4. Change plan for the menu of the categories.

Task Name Product Original category Destination category

Task 1 Dry cell Audio & video House & appliance

Task 2 SD Memory Card Cameras Computers

Task 3 A massage chair Health House & appliance

Task 4 Electronic dictionary Office Office

Task 5 Fax House & appliance Office

We perform the experiment after changing the website, as shown in table 7. We

show the experiment result in Fig.5. From Fig.5, the task execution time has been

reduced in tasks 1, 2, and 3 by applying the changed plan.

Fig. 5 shows the results of the execution time for each task in Step1 and Step

31.We can confirm that the execution time in Step 3 is shorter than that in Step 1, that

is, the improved menu structure based on the developers’ analysis using Wegjig was

effective.

1 Since the structure of the menu was changed in Task 4,we could not confirm the significant

difference between the results in Step1 and Step3.

Task 1 Task 2 Task 3 Task 5

0

Task Name

T
a

s
k
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

0
5

0
1

0
0

1
5

0 Original
Changed

Fig. 5. Result of the task execution time in Step1 and Step3.

5 Discussion

By using Webjig, developers can obtain information which they would not have

got with the existing systems. For this reason, developers can detect problems in

website usability and create a plan for improving website usability by collecting data

of users’ interactions, as performed in this experiment.

In the experiment where users choose the items from the menu, the developers can

determine the execution time for each task by using existing systems. Thus, they can

detect the problems of usability by comparing the execution time of each task and

pinpoint the task where the execution time is longer than that taken by another task. In

Fig.5, the execution time of tasks 1, 2, 3, and 5 is longer than that of task 4. For this

reason, a developer can hypothesize that there remains problems of website usability.

However, it is difficult to eliminate the problem if they cannot understand the cause of

the problem.

By using Webjig, a developer can efficiently detect the problem of website

usability. In case of task 1 (subjects find a dry cell), we show the experiment result in

table 3; dry cell belongs to audio-visual equipment, but many subjects pay attention to

household appliance. The developer hypothesized that “Many users think that a dry

cell belongs to a household appliance” and moved the dry cell from audio-visual

equipment to household appliance. As a result, the execution time is reduced before

changing the category.

According to Fig.5, the task execution time of the changed website is less than that

of the original website. In tasks 1, 2, and 3, we can observe significant improvement

in the execution time. However, in task 5, we did not observe any significant

improvement in the execution time.

Table 5. Priority for the improvement

Task Name Correct category (A) Current Category (B) B/A

Task 1 4% 54% 13.5

Task 2 13% 46% 3.5

Task 3 25% 71% 2.8

Task 5 29% 46% 1.6

We explain the reason for this. In table 5, we compare the rate of users who pay

attention to the correct category with the rate of users who pay attention to the

changed category. In case of task 1, 4% of users pay attention to the correct category

(a category of audio & visual) when searching for dry cell and 54% of users pay

attention to the wrong category (a category of house & appliance) when searching for

dry cell. This has a difference of 13.5 times. Similarly, task 2 has a difference of 3.5

times, task 3 has a difference of 2.8 times, and task 5 has a difference of 1.6 times. As

a result, we can say that if there is not a big difference in the rate of users who pay

attention to an original category and the rate of users who pay attention to a changed

category, we cannot confirm an effect in the change.

Therefore, developers have to examine whether the usability is improved by

understanding users’ interactions and not by the reason that the task execution time

was longer than others. By using Webjig, a developer can exactly understand users’

interactions and examine whether the usability is improved. However, it is difficult to

examine the improvement of website usability by using existing systems because

exact users’ interactions cannot be obtained.

However, developers cannot use the Webjig instead of user testing because they

can know the gaze point by using the eye tracking system and they can know the

intention of the user by interviewing him/her during user testing. But we saw that

there was the point that could be improved website usability by using Webjig.

Therefore, developers may efficiently improve website usability by combining user

testing and Webjig.

6 Conclusion and future work

In this paper, we proposed a Webjig support system for static and dynamic

websites. As a result of the experiment, we show that developers can improve website

usability effectively by using Webjig. In the future, we are going to think about the

cost of website usability evaluation between existing systems and Webjig and

compare usability testing with Webjig to determine the efficiency of website usability

evaluation.

Acknowledgements

This study is supported by Information-technology Promotion Agency, Japan

(IPA), Exploratory IT Human Resources Project (MITOU Program) in the fiscal year

2008.

References

1. Nielsen, J. and Landauer, T.K.: A mathematical model of the finding of usability problems,

the INTERACT '93 and CHI '93 conference on Human factors in computing systems,

pp.206–213 (1993)

2. Dumas, J.S. and Redish, J.C.: A Practical Guide to Usability Testing, Norwood, New Jersey,

Ablex Publishing (1993)

3. Barnum, C. M.: Usability Testing and Research, Longman, London (2001)

4. Hong, J.I. and Landay, J.A.: WebQuilt: a framework for capturing and visualizing the web

experience, the 10th international conference on World Wide Web (WWW '01), pp.717–724

(2001)

5. Etgan, M. and Cantoe, J.: What does getting WET (Web Event-logging Tool) mean for web

usability?, 5th Conference on Human Factors and the Web(HFWEB99), available from

http://zing.ncsl.nist.gov/hfweb/proceedings/etgen-cantor/index.html accessed 2009-2-27

(1999)

6. Arroyo, E., Selker, T. and Wei, W.: Usability tool for analysis of web designs using mouse

tracks, CHI'06 extended abstracts on Human factors in computing systems, pp.484–489

(2006)

7. Atterer, R. and Schmidt, A.: Tracking the interaction of users with AJAX applications for

usability testing, the SIGCHI conference on Human factors in computing systems (CHI '07),

pp.1347–1350(2007)

8. Chen, M.C., Anderson, J.R. and Sohn, M.H.: What can a mouse cursor tell us more?:

correlation of eye/mouse movements on web browsing, CHI '01 extended abstracts on

Human factors in computing systems, pp.281–282 (2001)

9 Mueller, F. and Lockerd, A.: Cheese: tracking mouse movement activity on websites, a tool

for user modeling, CHI '01 extended abstracts on Human factors in computing systems,

pp.279–280 (2001)

